机器学习对抗案例:愚弄Google图像识别算法

2018年CES在美国拉斯维加斯召开,站在风口浪尖上的科技企业纷纷出动,在会场各显神通地展示自己的科技产品和各种智能算法。近年来,人工智能的浪潮不断拍打着 IT 领域的海岸,各家科技巨头们都喜欢向外骄傲地宣布自己的算法能够如何完美地识别图片。然而事实还是能够证明图像识别算法所存在的弱点以及恶意攻击者能够针对算法弱点进行一定的利用。

机器学习对抗案例:愚弄Google图像识别算法

算法面对的幻象和幻听

早在 2015 年谷歌、微软和中国百度就表示,他们的深度学习算法就已经能够在基本功能上超越人类,实现判断和识别。

而在 2017 年 12 月,Facebook 继续宣布了自己的人脸识别算法已经得到了升级换代,该算法在用户自己没有标记照片(只是被其他人拍到)的情况下,也能给你发送照片提醒。

机器学习对抗案例:愚弄Google图像识别算法

但算法和人类不同。算法容易受到特定类型的问题的困扰,也就是存在“对抗案例(Adversarial Example)”。一些攻击者会精心设计出视觉假象,误导并诱使计算机作出错误判断,或者失去判断的准度,计算机就可能会把熊猫的图片识别成长臂猿。同样,这种欺诈手段不仅仅针对计算机图像,还可以是针对音频或者文字的。因此这也是一种算法能够看到的幻觉,或听见的幻听。

熊猫还是长臂猿,这个错误看上去可能还像是低层次的。但如果攻击者能够利用相同的方法控制自动驾驶汽车的 AI 系统,问题就会变的棘手起来。应该限速的时刻,攻击者如果能成功利用自动驾驶的算法,就可以设法让系统犯错。实际上,这样的事情已经发生,攻击者已经开始使用算法的弱点来绕过垃圾邮件过滤之类的系统。

机器学习对抗案例:愚弄Google图像识别算法

Google Cloud Vision API

麻省理工学院计算机科学与人工智能实验室 12 月公开的的研究显示,这些对抗性的例子比以前所了解的要容易得多。 该团队可靠地愚弄了Google 的 Cloud Vision API,这是一种已经应用在现实世界中的机器学习算法。

以往的对抗案例都是在“白盒”环境下进行实验设计和进行的,计算机研究员们在了解了驱动算法执行的计算机底层的运作原理后就可以进行针对性的探索,了解怎么做就可以欺骗他们。但这些情况下,对于案例并不具备攻击性,并没有什么威胁,因为攻击条件和现实环境相比还是离得远了些。

机器学习对抗案例:愚弄Google图像识别算法

MIT 研究团队11月公开的结果显示,他们成功在实验中让 InceptionV3 图像分类器将一个3D打印的海龟被识别成一把来复枪。更有趣的是,他们还能将3D海龟进行一些调整,在AI识别后可以是任何其他的物件。这是一个应用3D打印条件下的对抗案例。

而在 MIT 最新的研究成果中,他们的研究是在黑盒条件下进行的。在事先并不获知目标算法的运行原理的情况下,他们能够设计出一种快速获取黑盒对抗案例的方法,并能应用在多种不同的图像算法上,这其中也包括了 Google 的 CloudVision API 。在谷歌案例之中,MIT的研究员们针对的是识别不同图像的系统。

通过轻微调整照片中的像素,图像系统能够完全把机枪的照片识别成直升机。尽管对于人眼而言,这两个图像看起来完全相同。但这些人眼可以分辨的差异却会愚弄计算机设备。他们使用通用方法来制定对抗案例,他们会分析图像识别的结果,在其他结果的方向上对图像进行调整。

研究人员以随机方式生成需要的标签,在机枪案例中,分类器中的“直升机”标签也可以改成“羚羊”,哪一种标签对他们而言没有差别,研究能够证明的只是这种调整像素的方法可以无差别地实现任何结果。

MIT的研究成果验证了,现在的攻击者也可以应用这种方法来创建对抗案例。

机器学习对抗案例:愚弄Google图像识别算法

editors

相关文章
发表回复